产品文档

NeuFoundry

帮助中心 > 产品文档 > NeuFoundry > AI开发基本流程

AI开发基本流程

  开发流程:数据标注—》模型开发—》模型训练—》模型评估—》服务发布 - 流程说明: - A) 数据标注:使用者上传的是原始数据集,如果要用于进行模型训练,必须先对所上传的数据集,进行相应的数据标注,如文本分类、图像分类、目标检测等类型的数据标注。 - B) 模型开发:主要目的是为特定场景,基于一些常用框架,选择或者编写特定的算法,包含深度学习中最为关键的算法代码,构建模型的核心。本系统为专业算法工程师提供任务式、NoteBook两种交互方式,为非专业算法人员提供图形化拖拽、自动化两种交互方式。 - C) 模型训练:将上述方式得到的样本数据集,以及算法模型,通过在CPU或者GPU上进行多次反复迭代训练,最终得到特定的参数结果 - D) 模型评估:对训练完成的模型,通过已标注数据集进行验证,获取模型的准确率、召回率等相应指标项来进行模型评估,用户以此来判断模型是否符合预期。 - E) 服务发布:根据模型评估结果,选择符合业务预期的模型,将模型发布成API服务,以RestFul API的方式为业务系统提供服务支撑。


如果您对产品有使用或者其他方面任何问题,欢迎联系我们


更新时间:2020-04-28 10:05:12
文档反馈 docs feedback